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Abstract. In this paper a Branch-and-Bound (BB) algorithm is developed to obtain an
optimal solution to the single source uncapacitated minimum cost Network Flow Problem
(NFP) with general concave costs. Concave NFPs are NP-Hard, even for the simplest ver-
sion therefore, there is a scarcity of exact methods to address them in their full generality.
The BB algorithm presented here can be used to solve optimally single source uncapacitated
minimum cost NFPs with any kind of concave arc costs. The bounding is based on the com-
putation of lower bounds derived from state space relaxations of a dynamic programming
formulation. The relaxations, which are the subject of the paper (Fontes et al., 2005b) and
also briefly discussed here, involve the use of non-injective mapping functions, which guaran-
tee a reduction on the cardinality of the state space. Branching is performed by either fixing
an arc as part of the final solution or by removing it from the final solution. Computational
results are reported and compared to available alternative methods for addressing the same
type of problems. It could be concluded that our BB algorithm has better performance and
the results have also shown evidence that it has a sub-exponential time growth.

Key words: Branch-and-bound, concave network flows, dynamic programming, global
optimization, state space relaxation.

1. Introduction

Network flow problems arise frequently in several application areas
(Guisewite, 1994): transportation, communication, network design and dis-
tribution, production and inventory planning, facility location, scheduling
and air traffic control. The main feature defining the complexity of mini-
mum cost Network Flow Problems (NFPs) is the type of cost function for
each arc. The key source of complexity for concave NFPs arises from mini-
mizing a concave function over a convex feasible region, defined by the net-
work constraints, which implies that a local optimum is not necessarily a
global optimum. Concave NFPs are known to be NP-hard (Guisewite and
Pardalos, 1991a), even for the simplest version – Single Source Uncapaci-
tated (SSU) with fixed-charge (FC) arc costs. FC NFPs are problems with
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arc cost functions that consist of a fixed cost and a linear variable cost.
It should be noticed that every NFP with general nonlinear cost functions
can be transformed into a concave NFP on an expanded network (Lam-
mar, 1993). And also, that multiple source and capacitated NFPs can be
transformed into single source and uncapacitated NFPs (Zangwill, 1968).

Numerous exact and heuristic methods have been proposed over the
years. Most of the work developed on concave NFPs considers problems
with FC cost functions, which are a particular case of the more general
concave cost functions. A thorough survey of the state-of the art for net-
work problems is given by Guisewite (1994). Kim and Pardalos have devel-
oped linearization methods to solve the NFP with FC costs (Kim and
Pardalos, 1999) or piecewise concave costs (Kim and Pardalos, 2000a,b).
Their solution strategy first linearizes the objective function and then solves
the resulting linear program as a series of linear shortest path problems.
Kim and Hooker (2002) propose a Branch-and-Bound (BB) method for FC
NFPs, which combines constraint programming with linear programming
techniques. At each node of the search tree the constraint programming is
used to reduce the domain of a discrete variable and thus, the number of
branches. A linear programming relaxation provides a bound on the opti-
mal value of the problem. The method is twice as fast as mixed integer lin-
ear programming for FC transportation problems but not as fast for FC
NFPs. Ortega and Wolsey (2003) developed a branch-and-cut algorithm for
uncapacitated FC NFPs by extending the cutting planes used for solving
uncapacitated lot sizing problems previously developed in (Cordier et al.,
1999).

Linear approximations in a Dynamic Programming (DP) approach are
given by Burkard et al. (2001). The authors consider acyclic networks with
small degree vertices and general concave costs, for which they successively
solve linear problems. The linear underestimations are updated by using
information about the Lower Bounds (LBs). Since the LBs are feasible,
the authors obtain upper bounds by recomputing the cost of the solu-
tion using the original cost functions. The method was tested on layered
networks, transportation networks, and SSU flow networks and they were
able to conclude that the performance was much better for layered net-
works. Fontes et al. (2003) address SSU general concave NFPs using a
local search method. Different and informed initial solutions to restart the
search are obtained from the information about the LB solutions. The LBs
are computed by a state space relaxation procedure, which is described
in Fontes et al. (2005b). Guisewite and Pardalos (1991b) developed a BB
algorithm based on that of Gallo et al. (1980). The bounding process is
enhanced by projecting the LB on the cost of extending the current path.
Recently, Horst and Thoai (1998) developed a BB method for NFPs where
the flow cost function is concave (without a fixed cost component) for a
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fixed number of arcs and linear for the remainder. In their method, the
branching is performed by integral rectangular partitions and the bound-
ing by solving linear NFPs. The linearizations are obtained by convex enve-
lopes. Fontes et al. (2005a, in press) also developed a DP approach to solve
optimally the SSU concave NFP. The DP formulation has two main char-
acteristic: (i) no assumption other than separability and additivity is needed
and (ii) it is independent of both the type of cost functions considered and
of the number of nonlinear arc costs. Hence, different types of cost func-
tions can be considered.

In this paper, a new BB algorithm for the SSU concave NFP is pre-
sented. The bounding is performed by using LBs derived from state space
relaxations of a DP formulation. This formulation is stated in Section 2
and is discussed in greater detail in Fontes et al. (2005a). The LBs derived
by the state space relaxation are improved by using Lagrangian penalties
and state space modifications, and also by the development of additional
constraints. A brief account is given in Section 3 and a detailed discussion
is provided in Fontes et al. (2005b). In Section 4 we give details of the
BB algorithm as well as of its implementation, namely on how to mod-
ify the state space in order to incorporate the branching decisions previ-
ously made. The computational experiments reported in Section 5 include
FC NFPs and NFPs involving both a concave variable cost component
and a fixed cost component for all arcs. The latter problems are amongst
the most difficult concave NFPs and have only been addressed by Burkard
et al. (2001), Fontes et al. (2003, 2005a).

2. Problem Definition and Formulation

The network G= (W,A) to be optimized consists of a set W of n+1 ver-
tices (vertices 1, . . . , n denote demand vertices and vertex n+1 denotes the
source vertex t) and a set A of m directed arcs, A⊂{(i, j) : i ∈W,j ∈W \{t}}.
Each demand vertex has associated a non-negative integer demand ri . The
supply at the source vertex R matches the total demand required by the
n demand vertices. A solution structure is characterized by the flow rij on
each arc (i, j) ∈ A. A general non-decreasing, non-negative, and concave
cost function gij is associated with each arc (i, j) and satisfies gij (0) = 0.
The objective is to find a subset of arcs and arc flows that satisfy the
demand at minimum cost.

SSU concave NFPs have a finite optimal solution if and only if there
exists a direct path going from the source to every demand vertex and if
there are no negative cost cycles. Thus, a feasible flow is an extreme flow
if it contains no positive cycles. For the uncapacitated case a positive cycle
is a cycle with all arcs (i, j) satisfying rij > 0. Therefore, for the SSU case
an extreme flow is a tree rooted at the single source spanning all demand



130 DALILA B. M. M. FONTES ET AL.

vertices (Zangwill, 1968). The objective in solving this class of problems is
therefore equivalent to find a minimum cost directed tree network that sat-
isfy all customers demand.

The key characteristics of the following DP formulation, developed in
Fontes et al. (2005a) are: independence of the type and form of cost func-
tions, independence of the number of non-linear arc costs, and no assump-
tions other than separability and additivity.

Consider a set S ⊆W and a vertex x ∈S. Let
{
S ′, S̄ ′} be one partition of

set S, where S ′ ⊆ S \ {x} and S̄ ′ = S \ S ′. For each possible set S ′, let z ∈ S ′

be the root vertex of a directed tree spanning the set S ′. Let f (S ′, z) be
the minimum cost of supplying all demand vertices in S ′ with the required
commodity available at vertex z through a directed tree rooted at z. The
minimum cost of supplying a set S ′ from vertex x �∈ S ′ with the required
commodity made available at some vertex z∈S ′ is found by determining the
best combination of the minimum cost directed tree of S ′ rooted at vertex
z∈S ′ with the cost of arc (x, z), that is minz∈S ′

{
f
(
S ′, z

)+gxz

(∑
i∈S ′ ri

)}
.

By definition, the minimum cost incurred in supplying the remaining
demand vertices of set S not in S ′ from x is given by f

(
S̄ ′, x

)
. From the

above, the minimum cost f (S, x) of supplying all demand vertices in S,
with the commodity available at x ∈ S, is obtained by examining all pos-
sible subsets S ′ ⊆S \ {x} and given by

f (S, x)= min
S ′⊆S\{x}

[

f
(
S −S ′, x

)+min
z∈S ′

[

f (S ′, z)+gxz

(
∑

i∈S ′
ri

)]]

. (1)

Initial conditions for recursion (1) are provided by f ({x}, x)=0,∀x ∈W.

Hence, the optimal cost of supplying all demand vertices in set W from the
source vertex t , is given by

f ∗ ≡f (W, t)= min
S ′⊆W\{t}

[

f
(
W −S ′, t

)+min
z∈S ′

[

f (S ′, z)+gtz

(
∑

i∈S ′
ri

)]]

.

(2)

3. State Space Relaxation

Due to the large dimensionality of the state space, few combinatorial prob-
lems of large dimension can be solved efficiently by DP alone. In our model
there are (n+ 2)2n−1 states in the DP formulation and 22n−2

(
n2 +4n+8

)−
2n−1

(
3n2 +4n+8

)+ n + 2 transitions between states. (Details of the state
space analysis can be found in Fontes et al. (2005a).) State Space Relaxa-
tion (SSR) is a procedure for relaxing the state space associated with the DP
recursion that was first introduced by Christofides et al. (1981) and extended
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by Fontes et al. (2005b) to handle problems that involve transitions that go
across several stages. The solution to the relaxed recursion provides a LB, in
the case of minimization, to the optimal solution value.

In the DP formulation given by Equation (1) a state is represented by a
pair (S, x). The vertex x, acts as a source to supply the set of vertices S,
with x in S. The stage is given by the cardinality of the set S. In the relax-
ation, a non-injective mapping function h is used to represent the original
states (S, x) as relaxed states (h (S) , x). The mapping function h can take
different forms, in fact it can be any separable function. Three forms of the
mapping function, defining three relaxations are discussed in Fontes et al.
(2005b). From those we use here the so-called Combined relaxation where h

is defined as

h(S)= (p, q, r)=
(

|S|,
∑

i∈S

qi,
∑

i∈S

ri

)

,

where p is the cardinality of set S, ri is the demand of vertex i and qi is
a non-negative integer weight associated with vertex i.

The original state (S, x) is mapped into (p, q, r, x). Thus, the relaxed
recursion becomes,1

f (p, q, r, x)= min
p′�p−1
q′�q−qx
r′�r−rx

[
f
(
p −p′, q −q ′, r − r ′, x

)

+ min
z �=x

p′�1
q′�qz
r′�rz

[
f
(
p′, q ′, r ′, z

)+gxz

(
r ′)
]]

(3)

and is initialized by

f (p, q, r, x)=
{

0 if p =1, q =qx , and r = rx ,
+∞ otherwise. (4)

3.1. state space ascent

The solution to the relaxed recursion (3) provides a LB to the value of
a true optimum which is improved by a State Space Ascent (SSA) pro-
cedure that considers Lagrangean penalties and state space modifications.
The general idea is to force the solution to the relaxed problem “closer”

1There is a slight abuse of notation as we use f to denote the minimum cost associated
with a state in the original state space as well as in the relaxed state space. This should not be
confusing as from here onwards we are no longer interested in the original state space.
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to feasibility by penalizing the vertices not exactly satisfied using a penalty
λi or by modifying the weight qi of such vertices.

A three-phase procedure is used to improve the LB obtained by maxi-
mizing B, which is computed by solving Equation (5) with updated cost
functions g′

ij (r)=gij (r)+λj .

B (λ, q)= min
p′�P−1
q′�Q−qt
r′�R−rt

[
f
(
P −p′,Q−q ′,R − r ′, t

)

+ min
z �=t

1�p′
qz�q′
rz�r′

[
f
(
p′, q ′, r ′, z

)+g′
tz

(
r ′)
]]

−
∑

i∈V

λi. (5)

Phase I is performed for a pre-specified number of iterations. The penal-
ties and weights are initialized as λ0

i =0 and q0
i =0, respectively, and at iter-

ation k, the penalties are updated. The second phase picks-up from the best
LB found during phase I. Thus, the weights and the penalties are initialized
with the corresponding values. State space modifications are applied over a
pre-specified time period and the penalties remain unchanged. In the third
phase, the penalties and weights are reinitialized at the values correspond-
ing to the best LB found so far. This is then improved by updating the pen-
alties as in phase I, for a pre-specified number of iterations.

At iteration k the penalties/weights are updated taking into account its
previous value, the net flow supplied to customer i, and the gap between
the current LB and the best feasible solution found so far. (The upper
bound is obtained using the local search procedure described in Fontes
et al., 2003). Although such changes are based on the subgradient method
(Held et al., 1974), they are not standard Lagrangean equations as the pen-
alties/weights are not allowed to become negative and a reduction factor is
applied to prevent large changes.

The LB is further improved by restricting the searchable space, which
is accomplished by the use of additional constraints, namely: constraints
enforcing the use of sets, constraints to supply only reachable vertices, and
constraints using the cardinality of the partition.

Details of the SSA procedure, including penalties and weights updating
formulae and the development of the additional constraints are given in Fon-
tes et al. (2005b).

4. The Branch-and-bound Scheme

The BB methodology is based on the idea of dividing the set of all possible
solutions into smaller and smaller subsets (branching) and to compute for
each subset a LB on the cost of the best solution therein (bounding). The
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objective of computing the LB is first to limit the search and identify how
far the optimal solution is, and second to provide some information that
can be used as a guidance for partitioning the subsets. Regardless of how
we develop the BB tree, the quality of the bounds (quality of relaxations)
is the primary factor that determines the efficiency of a BB algorithm.
Nevertheless, the choice of tree development strategies, such as which sub-
problem corresponding to an active node (a node still to be partitioned
further) should be considered next is also significant. The variable which
should be selected for the division of such node is also another important
efficiency factor.

The process of supplying customers from the source vertex t can be
recorded in terms of a tree. Thus, branches emanating from a node of the
BB tree correspond either to the decision of fixing an arc as part of the
solution, or to the decision of not using such arc. The problem is then
split into two sub-problems by adding two mutually exclusive and exhaus-
tive constraints.

4.1. the bb algorithm

The state of the search procedure at each intermediate node u of the BB
algorithm is described by the partial solution, typically a directed tree sup-
plying a subset of vertices and rooted at the source vertex t . This subset
includes at least all vertices in the sequence of fixed arcs corresponding to
the path from the root node to node u.

The BB algorithm uses a modified version of the SSA procedure to com-
pute a LB on the cost of supplying all customers taking into account the
decisions already made (arcs fixed in the solution and arcs eliminated from
the solution), which is obtained as ZLB =Z′

LB −∑i∈V λi , where Z′
LB is given

by Equation (28).
At each BB node, LB improvements are again performed. These can be

achieved by (a) updating penalties, (b) updating weights, or (c) updating
both penalties and weights. Different behaviours are expected for different
alternatives. For example, smaller computational times are expected if only
the penalties are being changed as the state space is decreasing. (When a
vertex is fixed as part of the solution its weight can be reduced to zero
without affecting the search for the solution.) On the other hand, a larger
number of BB nodes is expected. Due to the possible trade offs between
the options available, three versions of the BB procedure were developed
and implemented. In BB1 only penalties are changed, BB2 only changes
the weights, while BB3 initially updates the penalties and at latter stages
updates the weights. At each BB node the penalties and weights are initial-
ized with the values corresponding to the best LB attained at the parent
node. If an arc, say (x, y) is being fixed in the final solution, then the
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weight associated with vertex y is set to zero (as this does not affect the
search for the LB and reduces the total weight). At each intermediate node
of the BB tree a pre-specified number of iterations is performed. In addi-
tion, there is a time limit at each BB node and also a constraint prevent-
ing more than 15 iterations to be performed if no improvement to the LB
value has been achieved. Moreover, if the LB value is improving the algo-
rithm is not allowed to move to another BB node, not even if the time and
iteration limits have been reached. A compromise between the measures of
theoretical quality (number of BB nodes) and practical applicability (com-
putational time required) has been used for this algorithm.

The main components of the BB algorithm are sub-problems that we
must select (selection), solve (bounding and checking elimination criteria),
and divide (branching if the sub-problem has not been eliminated). The
evolution of the BB algorithm is stored in a binary tree. The flow dia-
gram of this algorithm is given in Figure 1, while in Appendix A the steps
involved are described.

The branching and selection strategies are as discussed in Sections 4.2
and 4.3, respectively. The bounding is based on the SSA procedure previ-
ously introduced in Fontes et al. (2005b) and given here in Section 3, that
is modified in order to accommodate for fixing arcs. Since decisions are
being made on arcs, i.e., decisions on whether an arc must be part of the
final solution or eliminated from the final solution, we need to modify the
state space representation by including an extra state variable. This modi-
fication is explained in Section 4.4.1 and originates the modified recursion
given in Section 4.4.3.

4.2. branching

Branching divides a tree node, corresponding to a sub-problem, into two
mutually exclusive and exhaustive sub-problems. In this manner, the algo-
rithm constructs a binary tree of sub-problems. The branching strategy
involves the selection of an arc from the set of arcs available at a specific
tree node, on which to branch next. An arc, say (x, y) is chosen at a spe-
cific tree node, where vertex x is either a vertex already fixed as part of the
solution or the source vertex, in order to extend a partial solution by sup-
plying vertex y directly from vertex x. This way, we can guarantee that the
graph of the fixed arcs is connected and in fact, a tree. The first branching
is to fix the arc in the solution. The alternative branching is to reject arc
(x, y), i.e. customer y cannot be supplied directly from vertex x.

In choosing arc (x, y) for branching several rules were tried in order
to improve the computational performance of the algorithm. The one
adopted, always chooses the arc to branch next among arcs obtained in the
solution associated with the LB computation at the current tree node. The
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Figure 1. Flow diagram of the BB algorithm.



136 DALILA B. M. M. FONTES ET AL.

following sequence of steps is applied to select an arc, say (x, y) for further
branching. (x represents a fixed vertex or the source and y is the candidate
vertex for selection.)

(a) Most oversupplied vertex y, corresponding to an arc used repeatedly,
or to an arc associated with loops,

∑
z∈W rzy −∑z∈V ryz

ry

,

where rzy is the flow on arc (z, y) and ry is the demand of vertex y.
Note that the above ratio is greater than one, only if vertex y is sup-
plied more than once, either by the repeated usage of arc (x, y) or by
at least two different arcs.

(b) If there are no arcs responsible for infeasibilities to be fixed, then
choose the one “closest” to such an arc. The distance here is mea-
sured in terms of the number of arcs separating the two arcs in ques-
tion.

(c) If more than one arc is found (after applying (a) or (b)) then the fol-
lowing criteria are used in turn to choose an arc such that the vertex
to be fixed has

(i) highest demand,
(ii) lowest depth, and

(iii) largest state space reduction.

4.3. node selection rule

At any stage of the BB algorithm having more than one sub-problem to
be considered further, a choice of which sub-problem to use next has to be
made. Such choice may have an important role in the efficiency of the BB
algorithm. Several rules exist and they can be of two types: a priori rules,
that determine in advance the order in which the tree will be developed;
and adaptive rules, that choose a node using information (bounds) about
the status of active nodes.

In the implementation of our BB algorithm the best-first search adap-
tive rule was adopted. The next node to visit is the node with the largest
gap between the corresponding LB and the best upper bound available. In
the search for the optimal solution this node would necessarily be visited
because its LB value is the smallest and hence, it can not be fathomed.
In our implementation, when a node is considered for further partitioning
then both sons (the nodes corresponding to the two sub-problems found by
adding the two mutually exclusive and exhaustive decisions on an arc) will
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be solved at once, since this saves computational time in backtracking, i.e.,
searching for the constraints that define the sub-problem.

4.4. bounding

Bounds are obtained at each tree node by solving the corresponding
relaxed sub-problem using a modified version of the SSA procedure
described in Fontes et al. (2005b) and mentioned earlier. Each of these sub-
problems is identified by two sets of arcs, a set of arcs that cannot be used
in the solution (arcs ruled out of the solution by the branching decisions)
and a set of arcs that must be part of the solution (arcs fixed as part of
the solution by the corresponding branching decisions).

Since the problem being solved is a minimization problem, to eliminate
an arc from the solution it is enough to make the cost of such arc prohibi-
tive, i.e. very high when compared with the cost of the other arcs. By doing
so, when solving the sub-problem this arc will not be chosen because there
are cheaper alternatives.

When dealing with the arcs that must be part of the sub-problem
solution a different approach has to be taken. The objective of forcing a
particular set of arcs to be in the solution cannot be achieved by simply
changing the cost of these arcs or the cost of these arcs together with the
costs of some other arcs.

A possible way of handling arcs fixed as part of the solution is to elimi-
nate from the problem being solved the part corresponding to the decisions
already made. More specifically, if an arc (t, x) is fixed as part of the solution
then the problem to be solved becomes to supply the remaining demand ver-
tices. Arc (t, x) cannot be removed from any sub-problem being solved since
it might, in the optimal solution, be used to route an amount of flow larger
than the fixed flow being routed through it (initially the demand of vertex
x). Furthermore, the cost function of the arcs fixed as part of the solution
must be changed to reflect the fact that the arc is already being used and a
certain amount of flow is already being routed through it.

This type of approach, which is discussed next, was initially implemented
but, as expected, it was not very efficient, specially as the problem size
increases. Therefore, we developed a different approach that involves chang-
ing the state space representation and consequently the recursion such that
the modified version takes into account the decisions already made. This
latter approach is the subject of Section 4.4.1.

Initially, when arc (t, x) is fixed as part of the solution, rx the demand
of vertex x is being routed through it. Suppose another arc say (x, y) is
also fixed as part of the solution, then both arcs (t, x) and (x, y) are fixed
in the solution. The flow on these arcs is rx + ry and ry , respectively. Since
the arc cost functions are not linear, they need to be modified as follows.



138 DALILA B. M. M. FONTES ET AL.

g′′
xy(rxy)=

{
g′

xy(rxy) if (x, y) is not fixed,
gxy(rxy + r)−gxy(r)+λy otherwise,

(6)

where r is the accumulated flow previously fixed in arc (x, y) and g′
xy(rxy)=

gxy(rxy)+λy .
Let u be the current tree search node and Fu be the set of vertices corre-

sponding to the right-end point of the set of arcs fixed as part of the solu-
tion. The LB solution is now obtained by computing

f (n+1−|Fu|,Qu,Ru, t)−
∑

i∈V \Fu

λi,

where Qu =∑i∈V \Fu
qi , Ru =∑i∈V \Fu

ri , and V is the set of the n demand
vertices V =W \ {t}. Therefore, the state space of the current sub-problem
is much smaller than the state space of the original problem as |Fu| arcs
and thus vertices have already being fixed as part of the final solution.

The relaxed recursion is then rewritten as

f (p, q, r, x)= min
(p′,q ′,r ′)∈Sx(p,q,r)

[

f
(
p −p′, q −q ′, r − r ′, x

)

+ min
z �=x

(p′,q′,r′)∈Sz

[f (p′, q ′, r ′, z)+g′′
xz(r

′)]

]

(7)

subject to the additional constraints that reduce the searchable space, where

Sx(p, q, r)={(p′, q ′, r ′)∈N
3
0 : Equations (8)–(10) are satisfied}

and

Sz ={(p′, q ′, r ′)∈N
3
0 : Equations (11)–(13) are satisfied}.

p′ �
{

p −1 if no arc (i, x) is fixed,
p otherwise, (8)

q ′ �
{

q −qx if no arc (i, x) is fixed,
q otherwise, (9)

r ′ �
{

r − rx if no arc (i, x) is fixed,
r otherwise, (10)
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p′ �1, (11)

q ′ �
{

qz if no arc (i, z) is fixed,
min
i �∈Fu

qi otherwise, (12)

r ′ �
{

rz if no arc (i, z) is fixed,
min
i �∈Fu

ri otherwise, (13)

In the approach just described there are basically two ways of representing
a vertex for which the supplying route has been fixed. The vertex is either
represented by the triplet (0,0,0) or by the triplet (1,0,0). The penalties
for these vertices are set to zero, since both its demand and weight have
already been supplied. In the first representation we have

ZLB =f (n+1−|Fu|,Qu,Ru, t)−
∑

i∈V \Fu

λi,

while in the second

ZLB =f (n+1,Qu,Ru, t)−
∑

i∈V \Fu

λi.

Note that, in the former case vertices in Fu might or might not be in
the solution, while in the latter case they must be in the solution. Thus,
in the first representation the partition (0,0,0) must be allowed in order
to allow for supplying routes including vertices in Fu, that have zero car-
dinality, demand, and weight. By allowing these type of routes, that may
as well happen, the problem of how to prevent the method of cycling is
faced. To prevent this phenomenon the algorithm complexity increases, and
this increase is dependent on the number of such vertices. In the second
representation (1,0,0), the state variable p is of no use, as the constraint
associated with it can always be verified by using vertices in Fu, that can
be included at no cost. Thus, many more partitions have to be considered,
since a state (p, q, r, x) can be represented by any group2 of vertices satis-
fying

∑
i∈V \Fu

αi · ri = r − rx,
∑

i∈V \Fu
αi · qi = q − qx, and

∑
i∈V \Fu

αi � p − 1
with αi �0 and integer and p −1−αi vertices taken from Fu.

4.4.1. Fixing arcs by modifying the state space

To incorporate into the relaxed recursion the decisions on arcs fixed as
part of the final solution we need an extra variable s to represent the state

2Here and hereafter, we use the word group to denote a collection of vertices that may include
some vertices more than once. The elements in the group are not necessarily all different: actually
if they are all different then an optimal solution to the original problem has been found.
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space. A state is then represented by (p, q, r, x, s). Variable s can be any
integer between 0 and n and is associated with the number of arcs ema-
nating from vertex x that have been fixed as part of the solution.

The computation of a state, say (p, q, r, x, s) is divided into two parts:
if s = 0, then vertex x has no outgoing arcs fixed as part of the solution
and f (p, q, r, x, 0) is computed as before. To explain the computation of
f (p, q, r, x, s) for s >0 let us first introduce some notation.

Let F be the set of vertices such that an incoming arc is fixed as part of
the solution and Fx ⊆F the set of vertices such that for some vertex i arc
(x, i) has been fixed in the solution. Define T s

x as the fixed subtree rooted
at vertex x, which includes vertex x, and all fixed subtrees rooted at the
first s vertices in Fx . By definition T 0

x ={x}. Let vx be a function mapping
a fixed arc (x, i) onto vertex i. Assume that l arcs emanating from vertex
x have already been fixed as part of the solution. If arc (x, y) has been the
kth such arc, then vx(k)=y.

Let us consider an example where we have already fixed the following
sequence of arcs as part of the final solution: (t,1), (t,2), (t,10), (2,5), (2,8),

(10,3), and (8,13).

The set of fixed vertices F is given by

F = {j ∈V : (i, j) is fixed for all i ∈W }∪ {t}
= {1,2,3,5,8,10,13, t}. (14)

Sets Fx are defined as Fx = {i ∈ V : (x, i) is fixed, for all x ∈ F }. Hence we
have,

Ft = {1,2,10},
F1 = ∅, F2 ={5,8}, F10 ={3},
F5 = ∅, F8 ={13}, F3 =∅,

F13 = ∅.

(15)

For s =0,1,2, and 3 the fixed subtrees rooted at vertex t are given in Fig-
ure 2.

The function v mapping the fixed arcs onto the fixed vertices has the fol-
lowing values:

vt (1) = 1, vt (2)=2, and vt (3)=10,

v2(1) = 5 and v2(2)=8,

v10(1) = 3,

v8(1) = 13.

(16)

To compute f (p, q, r, x, s) for s >0, vertex x must supply vertex y, where
y =vx(s), in such a way that y can supply a group of vertices containing at
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Figure 2. Fixed trees rooted at the source vertex.

least all vertices in T
|Fy |
y . To supply such group of vertices we need a parti-

tion (p′, q ′, r ′, y,m) that satisfies the conditions given in Equation (17). The
remaining group of p −p′ vertices comprises at least: vertex x and all the
vertices in the fixed sub-trees rooted at the vertices corresponding to the
first s −1 vertices fixed as directly supplied by vertex x, which are given by
T s−1

x . Upper limits of p′, q ′, and r ′ are given in Equation (18). Thus, only
partitions satisfying Equations (17) and (18), are considered.

p′ �
∣∣∣T

|Fy |
y

∣∣∣ ,

q ′ �
∑

i∈T
|Fy |
y

qi,

r ′ �
∑

i∈T
|Fy |
y

ri,

m = |Fy |.

(17)

p′ � p − ∣∣T s−1
x

∣∣ ,
q ′ � q −

∑

i∈T s−1
x

qi,

r ′ � r −
∑

i∈T s−1
x

ri .

(18)

Consider again the example used above to illustrate the computation of
f (p, q, r, x, s). The LB solution for the current sub-problem is given by
f (P,Q,R, t, 3) since there are three vertices fixed as directly supplied by
the source vertex. The computation of f (P,Q,R, t, 3) requires the evalu-
ation of all partitions represented by (p′, q ′, r ′, y,m), where y = vt (3)= 10,
satisfying
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p′ � |T m
10|=2,

q ′ �
∑

i∈T m
10

qi =q10 +q3,

r ′ �
∑

i∈T m
10

ri = r10 + r3,

m = |F10|=1.

(19)

Vertex t has to supply directly other s − 1 = 2 known vertices, thus upper
limits on p′, q ′ and r ′ must also be satisfied. These upper limits, which are
given by Equation (20), correspond to lower limits of what must be kept
at the source vertex so that it can supply at least vertices 1 and 2 and the
fixed vertices they supply. In this case, the source vertex must supply at
least vertices 1, 2, 5, 8, and 13.

p′ � P −|T 2
t |=P −6,

q ′ � Q−
∑

i∈T 2
t

qi =Q− (qt +q1 +q2 +q5 +q8 +q13) ,

r ′ � R −
∑

i∈T 2
t

ri =R − (rt + r1 + r2 + r5 + r8 + r13) .

(20)

4.4.2. Reduction of the space to search

Constraints to eliminate part of the space to search and thus, improve the
efficiency of the LBs found have been introduced in Fontes et al. (2005b).
They are now revisited since by using information on the arcs already fixed
in the final solution as well as information on the arcs eliminated from
the final solution it is possible to take these improvements a step further.
Assume that state (p, q, r, x, s) is under consideration.

Constraints forcing the partitions to consider sets of vertices (rather than
groups) can be rewritten in a tighter way. Now, we consider one four-
dimensional matrix instead of the previous two three-dimensional ones. Let
σ be the four-dimensional matrix defining which partitions can be repre-
sented by sets respecting the conditions for vertices x and z, the vertices
acting as sources in the partition. This matrix is initially set to zero and
then set to one for each subset S ⊆V \F and each vertex x in W \S, with
p =|S|, q =∑i∈S qi , and r =∑i∈S ri .

• If s =0, qi and ri are the weight and demand associated with vertex i

then the constraints using the σ matrix are given by:

σ(p −p′ −1, q −q ′ −qx, r − r ′ − rx, x)=1,

σ (p −p′ −1, q −q ′ −qx, r − r ′ − rx, z)=1,

σ (p′ −1, q ′ −qz, r
′ − rz, x)=1,

σ (p′ −1, q ′ −qz, r
′ − rz, z)=1.

(21)
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• If s >0 these constraints are given as in Equation (22), where pm
i , qm

i ,
and rm

i are now computed by considering all the vertices in the fixed
tree T m

i and no longer only vertex i. These variables, take the values
of the cardinality, the weight, and the demand associated with vertex i

if m=0; Otherwise they are computed as in Equation (23), where m=
s −1 for vertex x and m=|Fz| for vertex z. (Note that r0

i = ri, q
0
i =qi ,

and p0
i =1 as T 0

i ={i}.)
σ(p −p′ −ps−1

x , q −q ′ −qs−1
x , r − r ′ − rs−1

x , z)=1,

σ (p′ −ps
z, q

′ −qm
z , r ′ − rm

z , z)=1.
(22)

pm
i =|T m

i |,
qm

i =
∑

j∈T m
i

qj ,

rm
i =

∑

j∈T m
i

rj .

(23)

Vertex x is already fixed in the solution therefore, these constraints
only need to be written for vertex z, as given above in Equation (22).
If for some specific values of p,q, and r the σ matrix verifies the
aforementioned conditions for vertex z, which might or might not be
fixed in the solution, then it also verifies them for vertex x.

The time complexity to compute this matrix grows exponentially with the
problem size. Fortunately, it also decreases exponentially with the number
of vertices fixed as part of the solution. During the BB algorithm, the time
complexity is a function of the vertices not yet fixed, i.e. O(2n−nf ), where
nf is the number of vertices fixed as part of the final solution.

Constraints on reachable vertices are written in the same way but the
values are different since sets Vz get smaller and smaller as the search tree
is being developed. Some arcs have been eliminated through direct branch-
ing decisions and some more as a consequence of forcing an arc into the
solution. Therefore, at each BB node we recompute the set of reachable
vertices for each vertex and thus, also the limits on (p′, q ′, r ′) given by such
set.

p′ � 1+|Vz|,
q ′ � qz +

∑

i∈Vz

qi,

r ′ � rz +
∑

i∈Vz

ri .

(24)

The constraints on the cardinality of the partition, can also be rewritten
in a tighter form as now they are computed using non-fixed vertices only.
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Let z be the vertex acting as a source for the current partition. Define m=
|Fz| and let rm

z , qm
z ,pm

z , rs−1
x , qs−1

x , and ps−1
x be computed as given in Equa-

tion (23). The values of p′ are limited, as given in Equations (17), (18), and
(24). Below they are specified when s =0 and s >0.

pz � p′ � min{1+|Vz|, p −px} if s =0,

pm
z � p′ � min{1+|Vz|, p −ps−1

x } otherwise.
(25)

Assume that we have in hands a value of p′ (number of vertices that must
be supplied by z) satisfying Equation (25). We can further restrict the pos-
sible values of q ′ and r ′ as follows:

q ′ � min{Qm
max(z,p

′), q −Qs
min(x,p −p′)},

q ′ � max{Qm
min(z,p

′), q −Qs
max(x,p −p′)},

r ′ � min{Rm
max(z,p

′), r −Rs
min(x,p −p′)},

r ′ � max{Rm
min(z,p

′), r −Rs
max(x,p −p′)}.

(26)

The values of Qm
max(z,p

′),Qm
min(z,p

′),Rm
max(z,p

′), and Rm
min(z,p

′) (as well
as Qs

max(x,p −p′),Qs
min(x,p −p′),Rs

max(x,p −p′), and Rs
min) are obtained

as follows:

Qm
max(z,p

′) = Qmax(z,p
′ −pm

z )+qm
z ,

Qm
min(z,p

′) = Qmin(z,p
′ −pm

z )+qm
z ,

Rm
max(z,p

′) = Rmax(z,p
′ −pm

z )+ rm
z ,

Rm
min(z,p

′) = Rmin(z,p
′ −pm

z )+ rm
z .

(27)

4.4.3. The modified recursion

The modified recursion making use of all the constraints discussed above
is then given by

f (p, q, r, x, s)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(p′,q ′,r ′)∈Sx(p,q,r)

[

f
(
p −p′, q −q ′, r − r ′, x,0

)

+ min
z �∈F∪{x}

(p′,q′,r′)∈Sz

[
f
(
p′, q ′, r ′, z,0

)+g′
xz(r

′)
]]

if s =0,

min
(p′,q ′,r ′)∈Ss

x(p,q,r)

[
f
(
p −p′, q −q ′, r − r ′, x, s −1

)

+f
(
p′, q ′, r ′, y,m

)+g′
xy(r

′)
]

otherwise,

(28)

where F is the set of vertices already fixed as part of the final solution,
y = vx(s) and m = ∣∣Fy

∣∣ .Sx (p, q, r) and Sz are the sets defining the upper
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and lower limits for the triplets (p′, q ′, r ′) used when s =0, and Ss
x (p, q, r)

is the set of possible values for (p′, q ′, r ′) when s >0.

Sx(p, q, r)={(p′, q ′, r ′)∈N
3
0 :p′ �p −1, q ′ �q −qx, r ′ � r − rx},

Sz=
{
(p′, q ′, r ′)∈N

3
0 :p′�1, q ′�qz, r ′�rz satisfying (21), (24),and(26)

}
,

Ss
x (p, q, r)={(p′, q ′, r ′)∈N

3
0 : satisfying (17), (18), (22), (24), and (26)

}
.

5. Computational Experiments

The BB algorithm was implemented in Fortran and computationally eval-
uated on a 200 MHz Pentium PC with 64 MB of RAM.

As in Fontes et al. (2005a,b), two types of cost functions were considered:
polynomials of degree 1 (having linear variable and fixed cost components)
and of degree 2 (having concave variable and fixed cost components). (We
decided to choose polynomial functions, since any function can be easily
approximated by a Taylor series.) For ease of notation, we refer to these
cost functions as linear FC and concave FC, respectively. The problems
used are available for download from the OR-Library (Beasley OR-L).

Type I : linear FC Type II : concave FC

gij (x)=
{

bij ·x + cij if x >0,
0 otherwise.

gij (x)=
{−aij ·x2 +bij ·x + cij if x >0,

0 otherwise.

The cost function gij is nondecreasing and aij , bij , and cij are non-negative.
Problems are divided in groups based on the ratio between variable and
fixed costs. Ten groups for problems with 10, 12, 15, 17, and 19 verti-
ces and five for problems with 25 and 30 vertices are considered. For
each group we generated three problem instances. Therefore, computational
experiments are carried out on 360 problem instances. To the best of our
knowledge NFPs with concave FC costs have only been considered in Fon-
tes (2000), Burkard et al. (2001) and Fontes et al. (2003, 2005a,b).

All tables give the average optimality gap associated with the best LB
found at the root node, the average number of (BB) nodes solved in order
to find an optimal solution, and the average time needed to solve them.
For problems with 10, 12, and 15 vertices we also include the number of
problems for which an optimal solution has been found at the root node.
The averages are taken considering only problem instances for which an
optimal solution has not been found at the root node.

Tables 1 and 2 summarize the results for problems with 10, 12, and 15
vertices using BB1 and BB2 for linear and concave FC NFPs, respectively.

For problems with 10 and 12 vertices, the results obtained for both BB
procedures are very similar. However, this is no longer true for problems
with 15 vertices. BB1 has a better practical behaviour (computational time),
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Table 1. Average results for linear FC NFPs

BB1 BB2

Size #Prob Gap(%) Nodes Time Nodes Time

10 6 0.007 2 00:00:00 2 00:00:00
12 11 0.035 2 00:00:05 1 00:00:45
15 25 0.250 6 00:03:24 3 00:32:35

Table 2. Average results for concave FC NFPs

BB1 BB2

Size #Prob Gap(%) Nodes Time Nodes Time

10 1 0.006 2 00:00:00 2 00:00:00
12 9 0.55 2 00:00:12 1 00:00:11
15 25 3.42 17 00:20:19 9 01:09:59

while BB2 has a better theoretical behaviour (number of sub-problems).
Thus, we developed a third version, referred to as BB3, that is a combi-
nation of BB1 and BB2. BB3 updates weights only if the number of ver-
tices that have their supply route still undetermined is less than or equal
to 15; otherwise the penalties are updated. The idea of BB3 is to establish
a compromise between practical applicability and theoretical performance.
The three versions were then used to solve problems with 17 and 19 verti-
ces and the results are given in Table 3.

For concave FC NFPs with 19 vertices, instances in class 10 are not
considered in the results reported for BB3, since no optimal solution was
found within the time limit imposed. If only the first nine problem classes
are considered, then the averages are 32 and 28 BB nodes and 1:32:55 and
2:44:16, for BB1 and BB2, respectively.

When concave FC costs are being considered the decrease obtained in
the number of nodes by using BB3 rather than BB1 is small but the time
increase is significant. BB2 performs worse than the other two versions.

Table 3. Linear and concave FC NFPs with 17 and 19 vertices

BB1 BB3 BB2

Size Type Gap(%) Nodes Time Nodes Time Nodes Time

17 FC 0.56 14 00:23:35 7 00:29:07 7 00:37:09
19 FC 0.76 15 00:46:26 9 01:11:01 19 00:55:30
17 Conc. 3.61 24 01:14:40 17 03:38:59 20 06:15:37
19 Conc. 4.36 47 02:10:11 40 04:05:02 40 04:08:41
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Table 4. Linear and concave FC NFPs with 25 and 30 vertices

Size Type Gap(%) Nodes Time Type Gap(%) Nodes Time

25 FC 1.61 62 04:00:39 Conc. 7.94 367 13:58:28
30 FC 1.55 299 07:14:39 Conc. 5.30 892 18:27:06

Table 5. Linear and concave FC NFPs with 25 and 30 vertices, phase I

Size Type Gap(%) Nodes Time Type Gap(%) Nodes Time

25 FC 2.01 237 00:32:19 Conc. 9.49 1764 03:13:54
30 FC 1.70 586 05:51:38 Conc. 5.91 2802 12:22:49

If linear FC costs are under consideration, the time performance is very
similar for all BB versions, but BB3 needs less nodes to be solved. The
results also show that the increase in the time required to solve the prob-
lems as the problem size increases, is much larger for concave FC problems
than for linear FC problems. This is expected, as concave FC problems are
much “harder” than linear FC problems. Furthermore, although the devel-
opment of the solution methodology is independent of the type of cost
function being considered its performance is not. This is the main reason
associated with the decision of using only procedure BB1 when solving the
larger problems. Results for concave and linear FC NFPs with 25 and 30
vertices are reported in Table 4.

For problems with 25 and 30 vertices the results obtained in phase I were
very similar to the ones obtained in phase III, particularly for FC prob-
lems, (see Fontes, 2000). Thus, in Table 5 we report results using at the root
node the LB of phase I. Time requirements are much smaller since during
phase I only the penalties are updated and hence, the total weight remains
at zero. Note that by using these LBs and BB1 we are actually using the
cardinality relaxation.

In Figures 3 and 4 the performance versus problem group is given for
procedure BB1.

Although the performance varies with problem class, a pattern cannot be
found. Thus, it can be concluded that the performance of our methodol-
ogy in solving concave NFPs cannot be measured by the value of the ratio
between variable and fixed costs, which is an important measure of the
problem difficulty (Hochbaum and Segev, 1989; Ortega and Wolsey, 2003).

Table 6 reports on the performance of BB1 for linear FC and concave
FC NFPs. For problems with 25 and 30 vertices we also report the results
when at the root node only phase I is considered.
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Figure 3. BB1 computational performance versus problem group for linear FC NFPs.

Figure 5 shows the effect of problem size on the computational time. On
the left-hand side, time is shown in minutes, while on the right-hand side
time is given on a logarithmic scale. As expected the number of sub-prob-
lems to solve and the computational time required by the BB algorithm
increase with problem size. The rate of increase is higher in the case of con-
cave FC costs. However, from the right hand side graph of Figure 5 it can
be seen that the BB has a sub-exponential growth due to the concave cur-
vature of the log scale plot.

Only Burkard et al. (2001) address SSU general concave NFPs, where all
arcs have concave costs and all vertices are demand vertices. The method
developed in Burkard et al. (2001) was tested on acyclic SSU flow networks
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Figure 4. BB1 computational performance versus problem group for concave FC NFPs.

Table 6. Average results for linear and concave FC NFPs

Size Gap(%) Nodes Time Size Gap(%) Nodes Time

10 0.007 2 00:00:00 10 0.006 8 00:00:00
12 0.04 2 00:00:05 12 0.45 2 00:00:12
15 0.25 6 00:03:24 15 3.42 17 00:20:19
17 0.56 14 00:23:35 17 3.61 24 01:14:40
19 0.76 15 00:46:26 19 4.36 47 02:10:11
25 1.61 62 04:00:39 25 7.94 367 13:58:28
25† 2.01 237 00:32:19 25† 9.49 1764 03:13:54
30 1.55 299 07:14:39 30 5.30 892 18:27:06
30† 1.70 586 05:51:38 30† 5.91 2802 12:22:49

† phase I.
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Table 7. Comparison of the average computational time with
the alternative methods

Size Burkard et al. (2001) Fontes et al. (2005a) BB1

10 – 00:00:01 00:00:00
11 00:00:13 – –
12 – 00:00:08 00:00:12
13 00:01:25 – –
15 – 00:03:35 00:20:19
16 00:12:05 – –
17 – 00:35:55 01:14:40
19 04:51:31 05:19:52 02:10:11
20 07:17:00 – –
21 13:19:54 – –
25 – – 03:15:54
30 – – 12:22:49

Figure 5. BB1 average computational time (minutes and log scale) for concave and FC
problems.

and the computational results reported are produced in Table 7 together
with the results we have obtained for the BB method presented in here and
the DP method presented in Fontes et al. (2005a). Recall that, each fig-
ure reported in this table for Fontes et al. (2005a) and for BB1 has been
obtained as an average out of 30 and 15 problem instances for smaller
(with up to 19 vertices) and larger problem sizes, respectively. Regarding
the results by Burkard et al. (2001) they are averages out of five problem
instances for problems with up to 16 vertices, while only one problem
instance has been solved for the remainder. In order to compare these three
sets of results, they have also been plotted in Figure 6.

As it can be seen, for smaller size problems the BB takes longer than
both Burkards’ and the DP methods. However, this conclusion is reversed
for larger problems, where the graph for the BB methodology is not as
steep and therefore, its performance dominates. From the results above we
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Figure 6. Comparison of the average computational time.

can also conclude that the computational time reported by Burkard et al.
(2001) is similar to the one reported by Fontes et al. (2005a) but not as
good as the one reported in this paper. Furthermore, although the quality
of the solutions obtained in (Burkard et al. (2001) is very good they are
not optimal.

6. Conclusions

In this paper, we give a BB algorithm to solve the SSU general concave
NFP optimally. At each BB node a LB is found by using state space relax-
ations of a DP formulation also developed by the authors. The bound-
ing procedure requires a modified version of the SSR given in Fontes
et al. (2005b), since it is necessary to include information on the decisions
already made. Thus, we have included an extra variable to represent the
state space. This variable is associated with the number of fixed arcs ema-
nating from the state vertex. The selection strategy is of the adaptive type
and uses the LB information of active nodes. The node we choose is the
one with the smaller LB value. The branching strategy is such that the
arc chosen is amongst the ones used in the LB solution, since these arcs
are more likely to be in the optimal solution. Two mutually exclusive and
exhaustive decisions are made about arcs, namely: eliminating an arc from
the final solution and forcing an arc to be in the final solution.
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The procedure was tested on a set of randomly generated test prob-
lems, which are available for downloading from (Beasley, OR-L). Exist-
ing literature, with the exception of Burkard et al. (2001), Fontes et al.
(2003, 2005a,b), considers simpler versions of the problem. For example,
authors addressing concave NFPs do not consider simultaneously a con-
cave variable cost and a fixed cost (Guisewite and Parados, 1991b), while
authors considering a fixed-cost component consider only linear variable
costs (Hochbaum and Segev, 1989). Some authors allow only a small per-
centage of the arc costs to be concave, the remaining being linear (Horst
and Thoai, 1998), and others consider only some vertices to be demand
vertices (Gallo et al., 1980; Guisewite and Pardalos, 1991b). Burkard et al.
(2001) and Fontes et al. (2003) developed methodologies that are capa-
ble of finding good quality solutions. Nevertheless, they have developed
approximate methods.

We compare the performance of our method with that of Burkard
et al. (2001) and Fontes et al. (2005a). It can be concluded that the method
described in here has better computational performance and can be used to
solve larger size problems. At least when SSU NFPs, where all arcs have
general non-linear concave costs and all vertices are demand vertices are,
under consideration. The other two methods require a computational time
that grows exponentially with the problem size. In contrast, we have shown
evidence that the BB algorithm has a sub-exponential growth, making it
the only real alternative to solve optimally larger size problems.

Appendix A: Description of the BB Procedure

It follows a detailed description of the BB procedure. Here, we are assum-
ing that the root node has already been solved. Thus, the first step is to
read the root node solution.

1. Initialization

Af =∅ and Ae =∅.

Read Root Node

(a) Read LB value and structure.
(b) Read penalty and weight vectors.
(c) Choose branching arc (x, y).
(d) Store root node.

2. Solve Right Son

(a) Eliminate arc (x, y),Ae =Ae ∪{(x, y)}.
(b) Compute the number of fixed arcs outgoing from the source vertex

(s), and compute the total number of fixed arcs (m=|Af |).
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(c) If any customer is disconnected then

i. Eliminate node,
ii. GOTO 3.

(d) Compute ZLB =f (P,Q,R, t, s)−∑

i∈V

λi as in Equation (28).

(e) If the solution is feasible then

i. If ZLB <ZUB then update ZUB , best found so far,
ii. Eliminate node,
iii. GOTO 3.

(f) If ZLB >ZUB then

i. Eliminate node,
ii. GOTO 3.

(g) If ZLB >Z∗
LB then update Z∗

LB

(h) If time/iterations are within limits then

i. Update penalties/weigths,
ii. GOTO 2(d).

(i) Store node data.

3. Solve Left Son

(a) Fix arc (x, y),Af =Af ∪{(x, y)}.
(b) Update the number of fixed arcs outgoing from the source vertex,

Update the number of fixed arcs m=m+1.
(c) If m=n then

i. Compute the cost of the fixed structure, it is a feasible solution,
ii GOTO 3(e).

(d) Compute ZLB =f (P,Q,R, t, s)−∑

i∈V

λi as in Equation (28).

(e) If the solution is feasible then

i. If ZLB <ZUB then update ZUB , best found so far,
ii. Eliminate node,
iii. GOTO 4.

(f) If ZLB >ZUB then

i. Eliminate node,
ii. GOTO 4.

(g) If ZLB >Z∗
LB then update Z∗

LB .
(h) If time/iterations are within limits then

i. Update penalties/weights,
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ii. GOTO 3(d).

(i) Store node data.

4. Select Node

Select a sub-problem from the list of active sub-problems if one exits.
Otherwise STOP.

5. Retrieve Node Data

(a) Retrieve penalty and weight vectors.
(b) Retrieve arcs fixed in and eliminated from the solution.

6. Choose Branching Arc
From all possible arcs choose arc (x, y).
GOTO 2.
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